3.170 \(\int \frac{\cos ^6(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=63 \[ -\frac{8 a^2 \cos ^7(c+d x)}{63 d (a \sin (c+d x)+a)^{7/2}}-\frac{2 a \cos ^7(c+d x)}{9 d (a \sin (c+d x)+a)^{5/2}} \]

[Out]

(-8*a^2*Cos[c + d*x]^7)/(63*d*(a + a*Sin[c + d*x])^(7/2)) - (2*a*Cos[c + d*x]^7)/(9*d*(a + a*Sin[c + d*x])^(5/
2))

________________________________________________________________________________________

Rubi [A]  time = 0.11561, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {2674, 2673} \[ -\frac{8 a^2 \cos ^7(c+d x)}{63 d (a \sin (c+d x)+a)^{7/2}}-\frac{2 a \cos ^7(c+d x)}{9 d (a \sin (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^6/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-8*a^2*Cos[c + d*x]^7)/(63*d*(a + a*Sin[c + d*x])^(7/2)) - (2*a*Cos[c + d*x]^7)/(9*d*(a + a*Sin[c + d*x])^(5/
2))

Rule 2674

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m + p)), x] + Dist[(a*(2*m + p - 1))/(m + p), Int[(
g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]

Rule 2673

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m - 1)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rubi steps

\begin{align*} \int \frac{\cos ^6(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx &=-\frac{2 a \cos ^7(c+d x)}{9 d (a+a \sin (c+d x))^{5/2}}+\frac{1}{9} (4 a) \int \frac{\cos ^6(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\\ &=-\frac{8 a^2 \cos ^7(c+d x)}{63 d (a+a \sin (c+d x))^{7/2}}-\frac{2 a \cos ^7(c+d x)}{9 d (a+a \sin (c+d x))^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.183941, size = 49, normalized size = 0.78 \[ -\frac{2 (7 \sin (c+d x)+11) \cos ^7(c+d x)}{63 d (\sin (c+d x)+1)^2 (a (\sin (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^6/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-2*Cos[c + d*x]^7*(11 + 7*Sin[c + d*x]))/(63*d*(1 + Sin[c + d*x])^2*(a*(1 + Sin[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.178, size = 57, normalized size = 0.9 \begin{align*} -{\frac{ \left ( 2+2\,\sin \left ( dx+c \right ) \right ) \left ( \sin \left ( dx+c \right ) -1 \right ) ^{4} \left ( 7\,\sin \left ( dx+c \right ) +11 \right ) }{63\,ad\cos \left ( dx+c \right ) }{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6/(a+a*sin(d*x+c))^(3/2),x)

[Out]

-2/63/a*(1+sin(d*x+c))*(sin(d*x+c)-1)^4*(7*sin(d*x+c)+11)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{6}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^6/(a*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 2.12587, size = 375, normalized size = 5.95 \begin{align*} \frac{2 \,{\left (7 \, \cos \left (d x + c\right )^{5} + 17 \, \cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{3} + 4 \, \cos \left (d x + c\right )^{2} -{\left (7 \, \cos \left (d x + c\right )^{4} - 10 \, \cos \left (d x + c\right )^{3} - 12 \, \cos \left (d x + c\right )^{2} - 16 \, \cos \left (d x + c\right ) - 32\right )} \sin \left (d x + c\right ) - 16 \, \cos \left (d x + c\right ) - 32\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{63 \,{\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d \sin \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

2/63*(7*cos(d*x + c)^5 + 17*cos(d*x + c)^4 - 2*cos(d*x + c)^3 + 4*cos(d*x + c)^2 - (7*cos(d*x + c)^4 - 10*cos(
d*x + c)^3 - 12*cos(d*x + c)^2 - 16*cos(d*x + c) - 32)*sin(d*x + c) - 16*cos(d*x + c) - 32)*sqrt(a*sin(d*x + c
) + a)/(a^2*d*cos(d*x + c) + a^2*d*sin(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.15408, size = 421, normalized size = 6.68 \begin{align*} \frac{\frac{{\left ({\left ({\left ({\left ({\left ({\left ({\left ({\left (\frac{11 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right ) \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{12}} - \frac{63 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{144 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{168 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{126 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{126 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{168 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{144 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{63 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{11 \, \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{12}}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{9}{2}}} + \frac{32 \, \sqrt{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{a^{\frac{33}{2}}}}{4032 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/4032*((((((((((11*sgn(tan(1/2*d*x + 1/2*c) + 1)*tan(1/2*d*x + 1/2*c)/a^12 - 63*sgn(tan(1/2*d*x + 1/2*c) + 1)
/a^12)*tan(1/2*d*x + 1/2*c) + 144*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^12)*tan(1/2*d*x + 1/2*c) - 168*sgn(tan(1/2*d
*x + 1/2*c) + 1)/a^12)*tan(1/2*d*x + 1/2*c) + 126*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^12)*tan(1/2*d*x + 1/2*c) - 1
26*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^12)*tan(1/2*d*x + 1/2*c) + 168*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^12)*tan(1/2*
d*x + 1/2*c) - 144*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^12)*tan(1/2*d*x + 1/2*c) + 63*sgn(tan(1/2*d*x + 1/2*c) + 1)
/a^12)*tan(1/2*d*x + 1/2*c) - 11*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^12)/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(9/2) + 32
*sqrt(2)*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^(33/2))/d